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Summary. Membrane transport models are usually expressed on 
the basis of chemical kinetics. The states of a transporter are 
related by rate constants, and the time-dependent changes of 
these states are given by linear differential equations of first order. 
To calculate the time-dependent transport equation, it is neces- 
sary to solve a system of differential equations which does not 
have a general analytical solution if there are more than five 
states. Since transport measurements in a complex system rarely 
provide all the time constants because some of them are too rapid, 
it is more appropriate to obtain approximate analytical solutions, 
assuming that there are fast and slow reaction steps. The states 
of the fast steps are related by equilibrium constants, thus permit- 
ting the elimination of their differential equations and leaving only 
those for the slow steps. With a system having only two slow 
steps, a single differential equation is obtained and the state 
equations have a single relaxation. Initial conditions for the slow 
reactions are determined after the perturbation which redistribute 
the states related by fast reactions. Current and z e r o - t r a n s  uptake 
equations are calculated. Curve fitting programs can be used to 
implement the general procedure and obtain the model param- 
eters. 
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Introduction 

Membrane transport models are frequently formu- 
lated according to the Eyring rate theory of chemical 
reactions. This approach has the advantage of pro- 
viding a theoretical framework to calculate the flux 
equations on the basis of a transport model. It is 
assumed that there are structures in the membrane 
that can provide a favorable environment for a sub- 
strate binding and transport from one side of the 
membrane to the other. Given a sequence of reac- 
tions and their rates with the concentrations of the 
substrates, it is possible to calculate the transmem- 
brane fluxes (for a review, s e e  Lfiuger, 1987). The 
results of these calculations can be compared to 
experimental data, and it is possible to verify if the 

transport reaction sequence is appropriate. Usually, 
the calculations are performed assuming that the 
transport system is in the steady state, mainly be- 
cause such calculations are more simple and provide 
analytical solutions (Turner, 1981; Sanders et al., 
1984). Also experimental data are more easily ob- 
tained in these conditions. But such a treatment has 
a serious limitation, since it is not always possible 
to determine the individual rates of the reaction se- 
quence only on the basis of a steady-state treatment. 
This approach will nevertheless provide evidence 
for a limited number of reaction sequences and take 
into account the influence of substrates and mem- 
brane potential. However, to compare a particular 
transport model to the measured fluxes or currents 
and to determine the individual rates, it would be 
necessary to calculate the time-dependent solution 
of the transport model and to compare this solution 
to the measured time dependence of the fluxes or 
currents. Such calculations and measurements have 
been performed on excitable membranes (Roy, 1975) 
and lipid bilayers containing ionophores (Lfiuger et 
al., 1981). With simple three- or four-state models, 
it was possible to obtain analytical solutions and to 
determine the rates of the reaction steps. In general, 
the time dependence of a transport system with n 
states will have n-1 time constants. To obtain them 
in relation to the reaction rates requires the solution 
of a polynomial of degree n-1. A major theoretical 
limitation arises when a system has five states or 
more: there is no general method to obtain an analyt- 
ical solution for such a polynomial. Since transport 
models frequently involve many reaction steps, it 
appears rather difficult to consider all their relax- 
ation processes. On the other hand, when a transport 
process contains many reaction steps, flux or current 
measurements would rarely provide all the relax- 
ations, because some steps are too rapid to be ob- 
served. When relaxations are measured, there could 
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be one which is slower than the others, as observed 
for the Na-K ATPase current and fluorescence relax- 
ations (Nakao & Gadsby, 1986; Borlinghaus, ApeU 
& L~tuger, 1987; Stfirmer et al., 1989). The Na-K 
ATPase transport system contains a large number 
of steps, but only one time constant was measured. 
The relaxation of the Na-H exchanger was studied 
by Otsu et at. (1989) with radioactive Na uptake in 
vesicles, and a single time constant was calculated 
from the data. A single current relaxation of the 
Na-glucose transporter was also observed recently 
(Parent et al., 1990). Therefore, a complete theoreti- 
cal treatment calculating all the time constants of 
a complex transport model would not always be 
necessary. Under these conditions, it would be more 
appropriate to provide an approximate calculation, 
taking into account that some reactions are more 
rapid than others and, thus, reach their equilibrium 
before other reactions start. Such a calculation 
would reduce the number of differential equations 
in the model and the number of time constants. If all 
the differential equations of a transport model could 
be reduced to onty one, it would be possible to obtain 
an analytical solution for a single relaxation which 
could be compared to the measured relaxation. Stan- 
dard curve fitting methods can be used to evaluate 
the unknown parameters. This approach has been 
recently introduced by Wierzbicki, Berteloot and 
Roy (1990) for the particular case of a simple carrier 
transport with four states. Assuming that there were 
two slow and two fast steps in the transport cycle, 
the model was transformed to give a single differen- 
tial equation, which was solved to give a single relax- 
ation. The uptake of a substrate was calculated for 
the z e r o - t r a n s  influx condition. It was shown that 
equations for the steady state, the time constant and 
the amplitude of relaxation could be obtained. These 
three functions depended differently on substrate 
concentrations and membrane potential. A compari- 
son of the results calculated analytically with those 
obtained through a numerical integration has shown 
that both were identical after a period of time corre- 
sponding to the fast relaxations. Therefore, the ana- 
lytical approximations were very accurate and could 
be used when a single slow relaxation is measured 
for some transport process to evaluate the unknown 
parameters. Although these calculations could not 
determine all the reaction rates, at least they could 
provide the rates of the slow steps. 

Transport models frequently involve a large 
number of reactions steps, and with larger models 
the extent of calculations becomes more important. 
This is particularly the case for active transport and 
cotransport models. Also, it is sometimes necessary 
to test different models or different positions of the 
slow steps within a model. Therefore, a rapid 

method to obtain the analytical solutions is neces- 
sary. The purpose of this paper is to provide a gen- 
eral calculation method for a single relaxation appli- 
cable to models of any size and for different external 
conditions. The method is similar to that introduced 
by Turner (1985) to calculate the steady-state solu- 
tion of a rapid equilibrium model of any size. The 
single time constant, the relaxation amplitude and 
the steady-state solution are obtained. The method 
can be applied to calculate the flux, the z e r o - t r a n s  
uptake and the current for different types of mem- 
brane transport models, whether active transport, 
cotransport, antiport or channels. Specific flux and 
current equations are derived only for transporters, 
although the method could also be applied to calcu- 
late the current in channels. The procedure can be 
introduced into a curve fitting program to provide a 
general approach to evaluate the parameters related 
to different models. 

General Solution for Transport Models with 
a Single Relaxation 

ASSUMPTIONS 

The method described to calculate approximate so- 
lutions giving a single relaxation in a complex trans- 
port system involves some specific assumptions. 
i) The transport system can be described completely 
by a set of linear differential equations of first order. 
ii) The total number of states in the system is con- 
stant. This is the conservation equation. 
iii) The transport system has fast and slow reactions. 
For a closed sequence of reactions, there are two 
steps that are much slower than all the others. 

The consequences of these assumptions are as 
follows: 
i) The states of the fast reactions are related by 
equilibrium constants even though these reactions 
are time dependent and not strictly at equilibrium. 
ii) After a perturbation, the states related by fast 
reactions redistribute themselves instantaneously to 
set the initial conditions for the slow reactions. 
iii) The membrane flux is calculated from the slow 
steps with bound substrates. 

TRANSPORT MODEL REDUCTION 

A diagram for a typical transport model having one 
closed sequence of reactions is shown in the Figure. 
According to assumption (iii) ,  there are only two 
slow reactions and all the others are fast. For exam- 
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Fig. 1. General diagram for a membrane transport system with 
one closed cycle of reactions. On side (1), No, N b . .. N,,, and on 
side (2), N~, N o . . . N z represent the states of the transporter 
on each side of the membrane. Substrate binding steps are not 
indicated explicitly; they are part of the rates expressed by k~b, 
k~a . . . and k,,o, ko, ~ . . . Each of the rates could also have a 
membrane potential dependence. 

ple in the Figure all the side (I)  reactions,  N~ to Nm, 
and the side (2) reactions,  N ,  to N~, are fast. These 
are expressed  with equilibrium equations between 
adjacent states. Those of side (1) are as follows: 

N b = (kab/kba)Na = K b N  ~ 

N ,  = ( k b j k , b ) N  b = K ~ N  b (1) 

and so on until the next slow step is reached. Simi- 
larly, on side (2) 

No = (k.o/ko.)No = KoN.  

Up = (~o/k~o)No = K~No (2) 

Introducing the conservat ion equation (assumption 
ii) 

N t =  N.  + Nb + Nc + . . . N ~  + No + Np + . . .  
(3) 

and using Eqs. (1) and (2), it gives 

N t = A a N ~  + A,~Nn (4) 

where 

A~ = 1 + K b + K b K  . + . . .  (5) 

A n = 1 + K o + K o K  p + . . . .  (6) 

Many different choices of  slow and fast steps 
could be made,  but each choice implies the partition 
of the t ransport  sys tem in two sections, each one 
containing the fast  reactions be tween the slow reac- 
tions. I f  the two slow reactions are not separated by 
a fast reaction, the value of A~ or A~ is equal to 1. 

A consequence of the rapid equilibrium assump- 
tion for the fast  reactions is that their derivat ives are 
directly proport ional  to each other. Taking the time 
derivative of  Eqs. (1 )and  (2) gives 

d N j d t  = K b d N j d t  

d N j d t  = K e d N b / d t  

d N o / d t  = K o d N J d t  

d N J d t  = K p  d N o / d t .  

(7) 

The time derivat ive of the conservat ion equation, 
Eq. (3), is also calculated 

d N ~ / d t  + d N j d t  + d N j d t  + . . . d N J d t  

+ d N o / d t  + d N p / d t . . .  = O. (8) 

There are two groups of derivat ives in Eq. (8). 
Using the set of  Eq. (7) with Eqs. (5) and (6), they 
give 

d N , , / d t  + d N j d t  + d N J d t  + . . .  = A ~ d N j d t  

d N J d t  + d N o / d t  + d N p / d t  + . . .  = A ~ d N j d t .  

(9) 

These two derivatives are related to each other 

A a d N a / d t  = - A n d N n / d t .  (10)  

According to assumpt ion (i) and the Figure, the time 
derivatives of  each state are expressed  as follows: 

d N j d t  = k h a N  9 + k ~ N n  - (k~b + k~,,)N~ (11) 

d N j d t  = k c b N  c + k a b N  o - (kbc + k b ~ ) N  b 

d N , / d t  : k o n N  o + k ~ N ~  - (kno + k , a ) N  . 

aNo/dt  = kpoN; + k.oN~ - (~o. + ko )No .  

The left-hand side of  Eq. (9) can be calculated 
by adding all the kinetic equations related by equilib- 
rium conditions. Because of the symmet ry  of these 
equations,  many  terms will cancel  each other when 
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they are added, leaving only the states next to a slow 
step. 

a o d N o / d t  = kzmN z + k~aN, - kmzN m - ko~N o. 
(12) 

Introducing the equilibrium equations, Eqs. (I) and 
(2), it gives 

A o d N o / d t  = -Bo~N,~ + BnaN~ (13) 

with 

Bo~ = ko. + k m z K b K c . . .  (14) 

B.o = k~o + kzmKoKp . . . .  (15) 

With Eq. (4) it is possible to eliminate N~ from 
Eq. (13). It gives the single differential equation of 
this reduced system 

d N J d t  + No(Bo~A ~ + BnaAo)/A~A~ = N,B~o/A~A~. 
(16) 

This equation can be easily integrated to give N~(t ) .  

N~( t )  = No(s)  - [N~(s) - N o ( O ) ] e x p ( - t / t o )  (17) 

where to is the time constant, No(s)  is the steady state 
and No(0) is the initial state. An equation similar to 
Eq. (17) can be written for N , ( t ) .  The value of to is 
the same, but N , ( s )  and N,(0) are different. 

N~(t )  = Nn(s)  - [N~(s) - N , ( O ) ] e x p ( - t / G ) .  

(17a) 

The time constant t o and the steady state No(s)  

and N , ( s )  are given by 

t o = AoA~/(Bo~A ~ + BnaA a) 

No(s ) = N t B J ( B o ~ 4 ~  + B ~ A o )  

Nn(s  ) = N t B J ( B o , r  + B~oAo). 

(18) 
(19) 

(19a) 

From these equations, any other state function in 
the transport system can be obtained through the 
use of the equilibrium equations. 

INITIAL CONDITIONS 

The initial state equation for No(0) and N,(0) require 
additional calculations. It should be remembered 
that rapid transitions will occur immediately after 
the perturbation and produce new initial conditions 
that are different from those prevailing before the 
perturbation. The states related by equilibrium con- 
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stants will redistribute themselves rapidly and pro- 
vide the initial conditions of the slow system. There- 
fore, from the given initial conditions before the 
perturbation No(*),  Nb(*) . . . and Nn(*), No(*) �9 . �9 
a new set of initial conditions No(0) and N~(0) are 
calculated. The sum of all the states related by equi- 
librium equations before and after the perturbation 
remain unchanged 

N o ( * )  + N b ( * )  + . . .  = No(0)  + N~(0)  + . . .  

N~(*) + No(*) + . . .  = Nn(O) + No(O) + . . . .  

(20) 

Introducing the equilibrium Eqs. (1) and (2), it fol- 
lows that 

No(O) = No(*)Ao(*)/Ao (21) 

N~(O) = Nn(*)An(*) /A  ~ 

with 

Ao(*) = 1 + Kb(*) + Kb(*)Kc(*) + . . .  

An(*) = 1 + Ko(*) + Ko(*)Kp(*) + . . .  

(22) 

where Kb(*), Kc(*) . . . .  Ko(*), Kp(*) . . . represent 
the values of the equilibrium constants before the 
perturbation. They could be different from those 
after the perturbation if the equilibrium constants 
depend on substrate concentration or on membrane 
potential. Since the whole system is in equilibrium 
before applying the perturbation, the slow steps are 
also related by equilibrium equations initially 

Nn(*) = K,(*)No(*) (23) 

with 

K.(*) = ko.(*)/kno(*). (24) 

Using Eq. (4) 

N, = Ao(*)No(*) + A,(*)N,,(*). (25) 

It follows that 

No(*) = Nt /[Aa(*)  + K,(*)A~(*)] 

Nn(*) = NtK~(*)/[Ao(*)  + Kn(*) AN(*)]. 

(26) 

Using Eqs. (21) and (26) with Eqs. (5) and (6), No(0) 
and N~(0) can be calculated as functions of equilib- 
rium constants; the other initial states can also be 
obtained from Eqs. (1) and (2). Some initial states 
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could have a zero value depending on where sub- 
strate binding occurs (Wierzbicki et al., 1990). 

S U B S T R A T E  T R A N S P O R T  

We have developed a procedure to transform a com- 
plex transport system with many states into one with 
only four states. This is possible if there are only 
two slow steps and four slow rate constants in a 
closed system. There is only one time constant, and 
each state has its initial and steady-state amplitude. 
The transport system is completely characterized 
analytically and provides the basis to calculate sub- 
strate transport which can be compared to measured 
substrate transport. Since the transport system con- 
tains only two reaction steps that are not related by 
equilibrium constants, substrate transport can be 
calculated only from these two steps. It should be 
mentioned that relating the fast reaction states by 
equilibrium constants is an approximation and not 
a true equilibrium. Because the rates of the fast 
reactions are much larger than those of the slow 
reactions, the exchanges between the fast reaction 
states are nearly the same as those occurring in equi- 
librium conditions. For example, if substrate binding 
is fast compared to substrate translocation, the sub- 
strate spends most of its time binding and unbinding, 
and once in while it is translocated through a slow 
step. Therefore, there is a flux through a fast step as 
well as through a slow step, but the flux through a 
fast step cannot be calculated directly from that step 
because of the equilibrium approximation. 

Substrate transport functions can be calculated 
from the state functions related by slow steps. The 
initial and steady-state functions, N(0) and N ( s ) ,  and 
the time constant, t~, are normally dependent on 
substrate concentrations. When a specific model is 
considered and substrate binding occurs at a particu- 
lar reaction step, the rate of this step is multiplied 
by the substrate concentration, S 1 o r  $2,  for side (1) 
or side (2) of the membrane. For example, if the 
binding of substrate $1 occurs from N~ to NI,, k~b 
becomes kobS~ and K b becomes K e S  I. Similarly for 
the binding of $2, k~o becomes knoS 2 and K o becomes 
KoS 2. Introducing those changes into Eqs. (5), (6), 
(14) and (15), gives the concentration dependence 
of to and those of the initial and the steady-state 
functions. Calculating to from Eq. (18), gives 

t a = [ l  + S I ( K  b + [(big],. + . . .  )] 

[1 + s2(xo + KoKp + . . .  )]/D (27) 

With the denominator D given by 

D = [1 + S I ( K  b + K b K  , + . . . ) ] ( k , , ~  + S 2 k a , , K o K  p . . . ) 

-- [1 + S 2 ( K  o -f- K o K  p + . . .  )](kan -~- S ~ k m z K b K c .  . . ) .  (27a) 

The steady-state equations all have the same denom- 
inator, only the numerators being different. In this 
example, the slow steps with bound substrate are 
N,~(s) and Nz(s) .  Using Eqs. (19) and (19a) with Eq. 
(1), Nm(S) and Nz(s)  are given by 

N ~ ( s )  = N t S 1 K b K c .  . . (k~o + S 2 k z m K o K p  . . . ) /D 
(28) 

Nz(s)  = N f l2KoKp  . . . (ko, , + SlkmzK~Kr . . . ) /D 
(28a) 

The initial states Nm(0 ) and Nz(O ) are calculated from 
Eqs. (21), (22) and (26). If the substrate S is added 
at the beginning of the measurements, N~(*) and 
iV,(*) are independent of S, because Ko(*) and Ko(* ) 
are equal to zero. In this case Ao(*) = An(*) = 1 and 
K.(*) = K,, 

N ~ ( 0 )  = 
N ,  &KbK~, .  �9 �9 

[1 + K,][1 + S I ( K  b + K b K  C + . . . ) ]  

Nt  S2KoKp . . . 

Nz(O) = [1 + K~-ll[1 + S2(K o + K o K  p + . . .  )]. 

(29) 

(2%) 

It is interesting to compare these functions regarding 
their concentration dependence. The steady-state 
functions Nm(s ) and the initial state functions Nm(0 ) 
have a similar form, both saturating as S~ is in- 
creased. But the half-saturation values are different 
for N,~(s) and N,,(0). The half-saturation value de- 
pends on the equilibrium constants for N,,(0) while 
it depends also on the rate constants for Nm(s  ). Also 
Nm(s)  is dependent on $2 while Nm(O ) is not. The 
concentration dependence of Nm(s) and to are also 
different. Both have the same denominator, but their 
numerators depend differently on S~ and S 2. There 
are terms in the numerator of to that are independent 
of S~ and $2, meaning that the value of t~ becomes a 
constant as the substrate concentrations tend toward 
zero values. The half-saturation value for the numer- 
ator of t o could be different from that for the denomi- 
nator, depending on the values of the parameters. 
The concentration dependence of to could increase 
or decrease as S 1 or $2 is increased and its half- 
saturation could be different from that ofNm(s ). For 
some particular combination of parameters, t o could 
be independent of S~ or S z, 

The rate and equilibrium constants could be 
voltage dependent. In this case the rates are 
multiplied by exponential functions of the membrane 
potential, according to the formalism of Lfiuger and 
Jauch (1986) and Apell (1989). If the membrane po- 
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tential is the applied perturbation, the functions of 
A(*) and A will be different if one or more of the 
equilibrium constants are voltage dependent. If the 
perturbation affects only the slow rate constants, 
the initial state values before and after the perturba- 
tion are the same. 

tions of substrate concentration are obtained, and 
they can be compared to those calculated from the 
model. 

C u r r e n t  

F l u x  a n d  U p t a k e  

Transport across membranes is frequently measured 
with radioactive substrates. In this case, the radioac- 
tive tracer Si is introduced on side (1) of the mem- 
brane and its content or uptake $2 is measured on 
side (2) of the membrane. From the transport model, 
it is necessary to calculate the time-dependent re- 
lease of substrate $2, assuming a constant concentra- 
tion of SI introduced initially on side (1). The uptake 
of a substrate $2 inside vesicles in z e r o - t r a n s  condi- 
tions has been treated in detail for a four-state model 
by Wierzbicki et al. (1990). The same method applies 
to calculate the uptake for our generalized model 
which has been reduced to a four-state model. If the 
substrate releasing step is slow, it is used to calculate 
the uptake. If this step is fast, a slow step preceding 
substrate release determines the rate of uptake; it 
could be a translocating or a binding step. The up- 
take of a substrate $2 on side (2) of the membrane is 
related to the flux Jl2 from side (1) to side (2) as 
follows: 

dS2/d t  = J n ( t ) .  (30) 

The flux J12(t) is determined by one of the four state 
functions N ( t )  related by slow steps, and it has the 
following form: 

J12(t) = J12(s) - [ J12(s)  - J12(0)]exp(- t/t~). (31) 

The functions for J12(s) and J12(0) are obtained from 
one of the four states related by slow reactions. In 
the example developed above, these functions are 

J12(s)  = kmzNm(s ) 
J12(O) = kmzNm(O ). (32) 

If Eq. (31) is independent of $2 and if the initial 
value of $2 = 0, the integration of Eq. (30) gives the 
following uptake function: 

S2(t  ) = Jl2(S) t - [ J12(s)  -- Jl2(0)]ta[exp(- t/ta) - 1]. 
(33)  

This function is compared to experimental data and 
values of Jl2(S), J12(0) and t~ are obtained for each 
uptake curve. Graphs of Jl~(s),  J~a(O) and ta as func- 

Substrate transport across membranes can also be 
studied from current measm-ements, if the substrates 
carry an electric charge. Current relaxations pro- 
duced by a rapid change of membrane potential or 
substrate concentration can be measured for time 
constants in the millisecond range. The calculation 
of the time-dependent current across a membrane 
will be performed for a transporter model, either 
active transport, cotransport or antiport. The theory 
of electrical relaxation in membranes has been re- 
viewed by Lfiuger et al. (1981) and has been applied 
to many different experimental measurements of ion 
transport in lipid bilayers. This theory has been re- 
cently used to calculate the relaxation of ionic cur- 
rents produced by the Na-K ATPase (Apell, 1989). 
The basic hypothesis of this calculation is that the 
time-dependent current I ( t )  measured in the external 
circuit is an a v e r a g e  c u r r e n t  resulting from the sum- 
mation of individual charge translocations in the 
transporter molecules associated with transitions 
between states of the reaction cycle. This current 
I( t ) ,  is given by the sum of the currents through each 
of the charged carrying steps in the transport system. 
It is also assumed in this calculation that the voltage 
step induces rapidly a constant electric field across 
the membrane. This is possible if the capacitive ef- 
fect is rapid and if the charge density inside the 
membrane is much less than that on the surface. A 
detailed discussion of these assumptions is given in 
L~iuger et al. (1981). In addition, it is assumed that 
membrane transport is much slower than diffusion 
through unstirred layers. 

This average current is given by 

I( t )  = F[aJa ( t )  + bJb(t)  + . . .  mJ,, ,( t)  + nJ~(t)  
+ oJo(t) + . . .  ]. (34) 

The coefficients a, b, m ,  n, and o are called the 
"dielectric coefficients" of the transitions. In the 
case of a homogeneous dielectric environment, they 
can be interpreted as the translocation of charges 
over a fractional membrane distance. Their values 
would be given by a = zala/d ,  b = z b l j d ,  m = 
Zmlm/d, n = z n l J d  and o = zolo/d ,  representing the 
displacement of a charge of valency za, z b . .  �9 over 
a distance la, lb �9 . �9 perpendicular to the membrane 
surface; d is the membrane thickness. In general, 
these coefficients depend on the dielectric properties 
of the transport protein. 
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J~(t) ,  Jb(t) �9 �9 �9 represent the net average flux 
across a particular step. Since there is only one re- 
laxation in the transport system, each of these net 
fluxes is given by the following equations: 

Jo(t)  = J . ( s )  - [ J o ( s )  - J ~ ( 0 ) ] e x p ( -  t / t  o) 

J~(t) = Jb(s) - [Jb(s) - J b ( O ) J e x p ( - t / t  o) 

(35) 

and so on for the other  net fluxes. 
Introducing Eq. (35) into Eq. (34), it gives 

I ( t )  = I ( s )  - [l(s) - I ( O ) l e x p ( - t / t  o) (36) 

where I ( s )  is the steady-state current and I(0) is the 
initial current. Since in the steady state all the fluxes 
are equal 

J ( s )  = J a ( S )  = J b ( S )  = �9 �9 �9 

I ( S )  = F J ( s ) [ a  + b + . . . m + n + o + . . . ]  = z F  J ( s )  

(37) 

where z = zo lo /d  + z u l j d  + �9 . �9 and z F  is the total 
charge transported across the whole membrane. 

The function for J ( s )  can be obtained from the 
net flux through any one of the slow reactions, be- 
cause in the steady stae the net flux through any step 
is the same. 

J ( s )  = k,~zN,,(s)  - kzmNz(s) .  (38) 

The initial membrane current I(0) is given by the 
sum of the initial current through each of the charge 
carrying steps. Since each of these currents can be 
different, they have to be calculated separately. 

I (0)  = F[aJa(O) + bJb(O) + . . .  mJm(O) + nJ,,(O) 

+ OJo(O) + . . .  ] (39) 

where Jo(O), Jb(O) . . . .  Jm(O), J~(0), Jo(0) �9 �9 �9 are the 
initial net fluxes through each step. The initial net 
flux through the slow steps are given by 

Jo(O) = k .aN,~(O)  - konNo(O  ) 

& ( O )  = k,,,~Nm(O) - ;czmNz(O). (40) 

From Eq. (12), the difference between these fluxes 
is obtained 

Jo(0) - Jm(0) = A a d N a / d t  = - A ~ d N n / d t .  (41) 

As stated above, there is also a net flux through each 
of the fast steps. They are represented by Jb between 
N~, and Nb, J~ between Nb and No, Jn between N~, 
and No, Jo between N o and Np and so on. The net 

flux through each of the fast steps is calculated from 
the time derivative of each of these states. 

d N j d t  = J~(O) - Jb(O) 

d N b / d t  = K a d N J d t  = Jb(0) - Jc(0) 

dN, , / d t  = - Ja (O)  + Jn(O) 

d N o / d t  = K o d N n / d t  = - J , ( O )  + Jo(O). (42) 

From Eqs. (41) and (42), each of the initial net flux 
equation for the fast reactions can be calculated. For  
example, Jb(0) is given by 

Jb(0) = [Jo(0) (Ao - 1) + Jm(O)l/Ao. (43) 

From these equations it is possible to determine the 
total initial membrane current I(0). This current  is 
more complicated to calculate than the steady-state 
current l ( s ) ,  because the initial currents at each reac- 
tion step can be different after the perturbation is 
applied. Binding and unbinding of charges from ex- 
ternal media and their transport  through the system 
produce these initial currents.  In some particular 
cases, the form of  I(0) could be simplified, depending 
on which reaction step is carrying a charge. 

CURVE FITTING 

Membrane transport models usually contain many 
unknown parameters.  It is therefore necessary to 
compare the measured flux or current  with that ob- 
tained from the model and to evaluate the unknown 
parameters which are usually the rate and equilib- 
rium constants and their voltage dependence.  When 
an analytical equation has been obtained to calculate 
the flux or the current,  it is much easier to use stan- 
dard curve fitting methods to evaluate the unknown 
parameters.  The first step of this evaluation is to 
compare the flux, the uptake or the current  equation, 
given respectively by Eqs. (31), (33) or (36), with the 
measured data to determine the initial and steady- 
state values and the time constant.  Normally these 
measurements are performed for different substrate 
concentrations and/or  different voltages. From 
these results, graphs of the initial and steady-state 
values and the time constant are obtained as func- 
tions of  substrate concentrat ion or voltage. These 
graphs can be compared with those calculated from 
a transport model. For  example, in uptake relaxation 
measurements obtained at different substra te  con- 
centrations S,, graphs of J12(s), J12(0) and t o would 
be obtained as functions of  S 1. Then using Eqs. 
(27)-(29), it is possible to determine if the data can 
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be reproduced with these equations and to evaluate 
the unknown parameters. It should be realized that 
not all the parameters can be evaluated by curve 
fitting. When products or sums of equilibrium con- 
stants always appear together, as factors of a sub- 
strate concentration, they have to be replaced by a 
single parameter. In the case of Eqs. (27)-(29), the 
group of equilibrium constants ( K b  + K b K c  + � 9  �9 ) 

multiplying $1 and ( K  o + K o K  p + . . .  ) multiplying $2 
cannot be evaluated individually. A single parameter 
must be used to replace each parenthesis. Also the 
products km zKbKc  . . . and k v ~ K o K  p . . . must be 
replaced each one by a single parameter. But the 
rates of the other slow step, kan and kna, can be 
evaluated. Even with these limitations, the measure- 
ment of a single relaxation provides much more in- 
formation on the rates of the transport process than 
steady-state measurements. 

The general analytical method we have devel- 
oped to calculate the time constant and the initial 
and steady-state transport functions are very useful 
to test different models on a set of experimental 
results. Equations (18)-(19a) and (21) provide the 
basic expressions to calculate explicit equations for 
these transport functions. It is possible to introduce 
these equations into a subroutine of a curve fitting 
program, followed by equations to calculate the flux 
or the current. Once this procedure is established, 
it remains the same for the different models. The 
difference between the models appears in the calcu- 
lation of A~, A n ,  A~(* ) ,  An (* ) ,  Ba~ and Bna, with their 
substrate concentration and voltage dependence. 
These functions can be introduced at the beginning 
of the subroutine, and they can be changed from one 
model to another. Depending on where the slow 
steps, substrate binding and voltage dependence are 
introduced in the system, these expressions could 
be different from one model to another. The advan- 
tage of this method is that different models can be 
studied with minor changes in the program. It is 
possible to compare the parameters obtained by 
curve fitting for different position of the slow steps 
in the cycle and also for different number of reaction 
steps. If the transport model contains more than 
one closed cycle of reactions, each cycle should be 
treated separately. 

Discussion 

The theoretical framework proposed in this paper 
gives the possibility to calculate analytically a single 
relaxation from an arbitrarily complex transport 
model. The basic assumption is that there are two 
reaction steps in a closed system that are slower 

than all the others. The fast reactions reach their 
equilibrium state immediately after the application 
of a perturbation which is either a voltage or a sub- 
strate concentration change. The states of these fast 
reactions are related to each other by their equilib- 
rium constants and are redistributed among them- 
selves after the perturbation. This procedure pro- 
vides the initial conditions for the slow reactions. 
The whole system is therefore described by four 
slow rate constants and many equilibrium constants. 
By selecting two likely slow steps, analytical expres- 
sions are obtained for the steady state, the initial 
amplitude and the time constant of the membrane 
flux. The rationale behind this calculation is that in 
many experimental flux or current measurements it 
is not possible to determine more than one relax- 
ation. By comparing those equations with available 
data, it is possible to determine the rate and equilib- 
rium constants using standard curve fitting pro- 
grams. The advantage of such calculations is to pro- 
vide a more detailed description of a transport 
system as compared with the steady-state treatment. 
It is possible to use numerical integration to obtain 
the time-dependent solutions of a transport system 
and to compare the calculations with the data. When 
the rate constants are not known, this method re- 
quires much trial and error calculations to obtain 
a reasonable fit with the data. When experimental 
results show a single time constant, our analytical 
treatment could be used to compare the flux or cur- 
rent measurements to those calculated from a model 
and to determine the rates of the slow steps, using 
curve fitting programs. Afterwards, numerical inte- 
gration could be use to determine the accuracy of 
the analytical calculation. 

An important aspect of our method is the selec- 
tion of the slow steps in the transport model. From 
the type of relaxation observed, whether the flux or 
current increases or decreases toward the steady 
state, it is possible to reduce the number of possible 
configurations of slow and fast steps to be studied. 
In a complex transport system, it would not be useful 
to try all the possible configurations of slow and fast 
steps; for example, a six-state model has 15 possible 
configurations. It is possible that in certain cases the 
substrate concentration dependence of the equa- 
tions is different depending on the position of the 
slow steps, but many different choices could lead to 
similar calculated results. It should be emphasized 
that relaxation measurements are a refinement in the 
study of a membrane transport system which has to 
be characterized first in its steady state to determine 
its general properties. Once the configuration of the 
transport system is more or less determined and 
some indication of the rates of the various steps is 
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available, relaxation measurements should be per- 
formed to determine more precisely those rates, us- 
ing our analytical treatment.  

The relaxation of current calculation was made 
to be applied to transporters rather than channels. 
It is possible to perform a calculation to describe a 
single relaxation of the macroscopic current in a 
population of channels using the same approach. 
The kinetic system can be used to describe the aver- 
age number of open and closed states and to calcu- 
late the time dependence of the average number of 
open channels, Nopen (t). The current relaxation is 
given by this function multiplied by the single-chan- 
nel current.  Such a calculation will be useful if the 
measured current shows a single relaxation and if 
there is evidence that there are more than three 
channel states. For  example, in the Figure, the state 
N~ would be an open state and the other closed 
states. Agonist activation of the channels could be 
fast reactions, while the voltage-dependent activa- 
tion could be slow or vice versa. This approach was 
used by Gunning and Ciani (1983) to calculate a 
single voltage-dependent relaxation of the average 
current in a three-state system with one open and 
two closed states. 

It is possible that relaxation measurements give 
more than one time constant. If two of them are 
measured, our approach can still be used but instead 
of two slow steps, three will be required. In that 
case the transport system can be reduced to two 
differential equations to be solved instead of one. 
It is possible to solve analytically such a system, 
although the solutions are more complex expres- 
sions of the rate and equilibrium constants. It seems 
therefore that the approach proposed in this paper to 
obtain approximate analytical solutions to describe 
relaxations in membrane transport  has many possi- 
bilities of applications, and the generalized method 
to calculate them should make its use more acces- 
sible. 
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